

Biogas production and nutrient recycling in the EU: the role of manure and agricultural residues

SCALE UP Training Session, 24/04/2024

Lucile Sever, EBA Policy Officer for Circular Economy

EBA members operate across the whole biogases value chain

+240 companies

51 National Associations

Research Centres

Europe produced 21 bcm of biogases in 2022

Energy production (bcm)

Combined biomethane and biogas production in Europe

■ Energy from biogas (bcm)
■ Energy from biomethane (bcm)

Agricultural plants rank first for the biogas and biomethane production

Biomethane in Europe is produced from sustainable feedstocks

Evolution of feedstock use

Driver #1:
GHG
emissions
savings

Enabler #1: Tech development

Figure 2.21

Number of new biomethane plants in Europe per feedstock type, 2008 – 2022

Manure will be the most used feedstock for biomethane in 2030

EU anaerobic digestion potential in 2030 per feedstock

In 2030, 32% of EU biomethane will be produced from manure and 24% from agricultural residues.

What is digestate?

Schematic overview of the inputs and outputs of the biogases production process

During anaerobic digestion, biogas is produced along with digestate.

Digestate contains a higher proportion of **readily available nutrients** than in the raw feedstock.

The same amount of **stabilised organic matter** is present in the digestate than in the raw feedstock.

→ Digestate is a valuable organic fertiliser and soil improver.

Digestate offers an alternative to synthetic fertilisers

31 Mt (DM)

digestate produced Europe, **2022**

Digestate can already displace:

15%

Nitrogen-based fertilisers

(N applied in EU-27: 11.1 Mt/year)

11%

Phosphorus fertilisers

(P applied in EU-27: 2.8 Mt/year)

6%

Potassium fertilisers

(K applied in EU-27: 3.1 Mt/year)

GHG reduction potential when displacing synthetic N-fertilizers with digestate

10 Mt of CO₂ equivalent in 2022

Natural gas is the main feedstock and energy source to produce synthetic fertilisers

The replacement of 15% of synthetic nitrogen fertilisers with digestate could save today around 2 bcm of natural gas

©2023

Digestate is an enabler of carbon sequestration

9,3 Mt of Total Organic Carbon, 2022

More **stable organic carbon**, particularly **recalcitrant to biodegradation**

- ➤ High potential for carbon sequestration
- ➤ Leads to humus and structure formation in the soil and increases its fertility, functionality, microbial activity, aeration, and water storage capacity

Carbon sequestration potential of digestate

	% of remaining TOC after 92 days
Solid fraction of digestate	86%
Digestate 1	73%
Digestate 2	56%
Cattle manure	58%
Maize straw	43%

Reuland, G.; Sleutel, S.; Li, H.; Dekker, H.; Sigurnjak, I.; Meers, E. Quantifying CO_2 Emissions and Carbon Sequestration from Digestate-Amended Soil Using Natural ¹³C Abundance as a Tracer. Agronomy 2023, 13, 2501.

→ The application of (solid fraction) digestate on soil is both a **sustainable soil management** and a **carbon farming practice**

European digestate production

Most common end-use:

directly applied biofertilizer

Mostly non-separated digestate

Austria, Denmark, Germany, Poland, Slovakia, Sweden, and Ukraine

Mostly liquid digestate

Serbia, Croatia, Slovenia, UK, Switzerland and Belgium

Digestate end-uses in Europe

Usage as a biofertiliser (after upgrading)

■ Biological processing (nitrification/denitrification)

Exported

Other usage

Digestate valorization routes

Regulatory challenges and opportunities for digestate

Challenges

- Fertilising Products Regulation (EU 2019/1009): setting heavy requirements for digestate to be CE-marketed as organic fertiliser or soil improver.
- Animal By-Products Regulation (EC 1069/2009 & EU 142/2011, EU 2023/1605): setting additional requirements for certain *animal by-products* to be placed on the market.
- **Nitrates Directive** (91/676/EEC): restricting the application of digestate from *manure*.
- **Sewage Sludge Directive** (86/278/EEC): restricting the application of digestate from *sewage sludge* in agriculture.

Opportunities

- Soil Monitoring Law: promoting the application of circular fertilisers as a sustainable soil management/regeneration practice.
- Common Agricultural Policy: incentivizing the use of organic fertilisers through eco-schemes.
- Carbon Removal Certification Framework: setting a voluntary framework for carbon removal activities including carbon farming.
- Waste Framework Directive: encouraging the recycling of bio-waste through anaerobic digestion with use of digestate.
- **Urban Wastewater Treatment Directive:** stimulating the recovery of nutrients from *sewage sludge*.

Thank you for your attention!

Lucile Sever sever@europeanbiogas.eu

